Plant metabolism: Enzyme regulation by 14-3-3 proteins

نویسندگان

  • Paul C. Sehnke
  • Robert J. Ferl
چکیده

14-3-3 proteins have been found to regulate the plant enzyme nitrate reductase by reversible phosphoserine binding. Plant plasma-membrane H(+)-ATPases, transporters that are activated by the phytotoxin fusicoccin, appear to be regulated in a similar fashion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase.

Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functio...

متن کامل

Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism.

Protein phosphorylation is key to the regulation of many proteins. Altered protein activity often requires the interaction of the phosphorylated protein with a class of "adapters" known as 14-3-3 proteins. This review will cover aspects of 14-3-3 interaction with key proteins of carbon and nitrogen metabolism such as nitrate reductase, glutamine synthetase and sucrose-phosphate synthase. It wil...

متن کامل

14-3-3 proteins: a family of versatile molecular regulators.

The 14-3-3 proteins are a family of acidic regulatory molecules found in all eukaryotes. 14-3-3 proteins function as molecular scaffolds by modulating the conformation of their binding partners. Through the functional modulation of a wide range of binding partners, 14-3-3 proteins are involved in many processes, including cell cycle regulation, metabolism control, apoptosis, and control of gene...

متن کامل

Transgenic 14-3-3 isoforms in plants: the metabolite profiling of repressed 14-3-3 protein synthesis in transgenic potato plants.

14-3-3 proteins are abundant eukaryotic proteins that interact with many other proteins, thereby modulating their function and thus cell metabolism. The data from mRNA analysis confirm the developmental regulation of 14-3-3 isoform expression in potato plants. In order to test whether or not 14-3-3 protein expression affects plant phenotype and metabolism, transgenic potato plants either overex...

متن کامل

Phosphorylated non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from heterotrophic cells of wheat interacts with 14-3-3 proteins.

Glyceraldehyde-3-phosphate dehydrogenases catalyze key steps in energy and reducing power partitioning in cells of higher plants. Phosphorylated non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) present in heterotrophic cells of wheat (Triticum aestivum) was activated up to 3-fold by MgCl2. The effect was not observed with the non-phosphorylated enzyme found in leaves. The div...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1996